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1. Introduction

Recently the black hole attractor mechanism has attracted a lot of attention. This is mainly

because of the recent developments in the connection between the partition function of four

dimensional BPS black holes and partition function of topological strings [1].

According to the attractor mechanism the values of the moduli scalar fields at the hori-

zon are entirely determined by the charges of the black hole regardless of their asymptotic

values. Originally this special behavior has been discovered in the context of BPS extremal

black holes in four dimensional N = 2 supergravity with unbroken supersymmetry in [2 – 5].

Later on it was shown that the attractor mechanism can also work for non-BPS extremal

black holes [6 – 8]. In particular new algebraic attractor equations describing both BPS

and non-BPS solutions have been introduced in [9] (for further discussions see [10 – 13]).

More recently attractor mechanism has been studied in non-supersymmetric extremal

black holes [14] (see also [15]). In fact a similar structure to supersymmetric extremal black

holes appears in non-supersymmetric cases. Namely the true attractive points correspond

to the critical points of the black hole effective potential which make the potential minimum.

Moreover the entropy of these non-supersymmetric extremal black holes is given by the

value of the effective potential at the extremum and therefore due to the attractor behavior,

it is given by the charges of the black hole.

On the other hand a general method for computing the entropy of spherically sym-

metric extremal black holes in a theory of gravity coupled to gauge fields and scalar fields

has been developed in [16]. In this method one can obtain the entropy of the extremal

black hole just by using its near horizon field configuration, assuming the existence of the

full black hole solution. To be precise let us consider an extremal d-dimensional black hole

whose near horizon geometry is AdS2 × Sd−2 and carries electric and magnetic charges.
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There are also several scalar fields in the theory. One then defines the entropy function as

the Legendre transform of the Lagrangian density integrated over angular variables, with

respect to the value of the electric field strength at the horizon. Extremizing the entropy

function with respect to near horizon variables will result in a set of algebraic equations

for these parameters. The entropy of these black holes is given by the value of the entropy

function evaluated at the extremum.1

It is shown that the entropy function is actually proportional to the effective potential

of non-supersymmetric extremal black holes [19]. In this sense the entropy function is given

directly in terms of the prepotential in the supersymmetric case. We will come back to

this point in section 4.

It is worth noting that due to the algebraic nature of the equations, higher derivative

corrections to the action and entropy can be obtained more simply in this formalism.

Indeed this method has been used to compute corrections to the entropy of the different

extremal black holes in [20 – 24].

Although the entropy function has mainly been used in non-supersymmetric theories,

this formalism has also been applied to N = 2 supergravity theories in [25] where the

authors have shown that the BPS attractor equations can be obtained by extremizing the

entropy function with respect to the black hole charges. It is one of the aims of this paper to

study the generalized attractor equations using the entropy function which can be applied

to supersymmetric as well as non-supersymmetric theories. Being simple, this formalism

can be used to find the attractor equations in the presence of higher order corrections. The

supersymmetric attractor equations in the presence of higher order corrections have been

studied in [26].

Having had the attractor equations which come out from the equations of motion, one

may ask if the entropy function mechanism is just a technical method. In other words

we would like to understand the physical interpretation (if any) of the entropy function

which is essentially equivalent to the Wald formula for the entropy. In order to address this

question we will follow the recent works on connection between topological string theories

and black hole partition function [1] where the authors have proposed a mixed ensemble for

the extremal black hole of four dimensional supergravity obtained by compactification of

type IIA on Calabi-Yau 3-fold. In particular we would like to compare the entropy function

formalism with the structure used in [1] (see also [27 – 31]).

This paper is organized as follows. In section 2 we rederive the generalized attractor

equations in N = 2 supergravity theories by extremizing the effective potential. In section

3 we show how the generalized attractor equations can be obtained in entropy function

formalism where higher order corrections can also be taken into account. In section 4

we will study the partition function of the extremal black holes in the context of entropy

function formalism following OSV conjecture. The last section is devoted to discussions.

1We note that a similar function has also been found in the supersymmetric case in [17, 18]. Although

in the supersymmetric case it is not called entropy function, it has precisely the same properties.
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2. Generalized attractor equations

In this section we rederive generalized attractor equations in N = 2 four dimensional

supergravity coupled to n vector multiplets. These equations have recently been studied

in [10 – 13]. Using these equations one can study BPS and non-BPS attractive points in

the same way. The aim of this section is to present a direct derivation of these generalized

attractor equations by minimizing the leading order effective potential.

Consider N = 2 four dimensional supergravity coupled to n vector multiplets. To

study these theories it is useful to work within the framework of the special geometry. A

special Kähler manifold can be constructed by a 2n+2 dimensional flat symplectic bundle

over a Kähler manifold with a symplectic section defined by

Π = (LI ,MI), I = 0, .., n, (2.1)

subject to a constraint i(L̄IMI − LIM̄I) = 1. LI and MI depend on scalar fields t and t̄

which parameterize the moduli space. They are also covariantly holomorphic which means

DīΠ = (∂ī − 1
2Kī)Π = 0. Here K is the Kähler potential.

Introducing a symplectic charge (qI , p
I) one can define a covariantly holomorphic cen-

tral charge as

Z(t, t̄, p, q) ≡ (LIqI − MIp
I), (2.2)

which satisfies DīZ = DiZ̄ = 0. From four dimensional supergravity point of view one

may identify this with the charge of the graviphoton. On the other hand one may identify

the (qI , p
I) with the charges of a black hole solution in this four dimensional supergravity

whose effective potential is given by

Veff = |Z|2 + |DiZ|2 , (2.3)

which is symplectic invariant. It is known that the attractor equations can be obtained by

extremizing this potential [6, 32].

The extremization of the effective potential will give the following condition

2(DiZ)Z̄ + Gjk̄DiDjZD̄k̄Z̄ = 0, (2.4)

which can be solved to find the attractor points. One of its solutions is given by

DiZ = D̄īZ̄ = 0, (2.5)

which leads to the supersymmetric attractor equations as follows

pI = i(Z̄LI − ZL̄I), qI = i(Z̄MI − ZM̄I). (2.6)

One may also relax the supersymmetric condition DiZ = 0 and look for a general solution

of equation (2.4) which could lead to non-supersymmetric equations as well. To do this let

us start with the conjugate form of the equation (2.4). Using the definition of Z the first

term in the equation (2.4) reads

2ZD̄īZ̄ = 2Z(DīL̄
IqI − DīM̄Ip

I). (2.7)
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One can replace DīM̄I with NIJDīL̄
J , where NIJ is a complex symmetric (n+1)× (n+1)

matrix such that DīM̄I = NIJDīL̄
J . Now contracting both sides of the equation with

GīiDiL
K and using the identity

DiL
IGīiDīL̄

J = −1

2
Im(N−1)IJ − L̄ILJ , (2.8)

we will obtain the following relation for the charges pI

pI = i

[

− 2ZL̄I +
Gij̄Glk̄D̄j̄D̄k̄Z̄DlZDiL

I

Z
−

[

Im(N−1)q + (ReN ImN−1)p
]I

]

. (2.9)

To get the other charges qI we first multiply the above equation by (N̄−1)IL and then

taking into account that NIJ(N−1)JL = δL
I , we arrive at

qI = i

[

− 2ZM̄I +
Gij̄Glk̄D̄j̄D̄k̄Z̄DlZDiMI

Z

+
[

(ReN ImN−1ReN + ImN )p − (ImN−1ReN )q
]

I

]

. (2.10)

Now taking the imaginary parts of the above relations we can obtain the generalized at-

tractor equations which are

qI = 2Im

[

ZM̄I −
Gij̄Glk̄D̄j̄D̄k̄Z̄DlZ

2Z
DiMI

]

,

pI = 2Im

[

ZL̄I − Gij̄Glk̄D̄j̄D̄k̄Z̄DlZ

2Z
DiL

I

]

. (2.11)

Here we assume that Z 6= 0. This is the general form of the attractor equations in leading

order which are valid for both supersymmetric and non-supersymmetric cases. In particular

setting DiZ = 0 one gets the supersymmetric equations. They have exactly the same form

as those in [12].

3. Generalized attractor equations from entropy function

In this section we shall study the attractor equations using the entropy function formal-

ism [16]. It is important to note that the attractor equations presented in the previous

section are valid only in leading order. In fact taking into account higher order corrections

to the action one needs to minimize the corrected effective potential. The supersymmetric

attractor equations in presence of higher order corrections have been studied in [26].

We note, however, that using the entropy function one may easily handle the higher

order corrections in the same way as the leading order both for supersymmetric and non-

supersymmetric cases. Actually it is the aim of this section to derive the generalized

attractor equations for N = 2 supergravity in four dimensions when the higher order

corrections are also taken into account.
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3.1 General formalism

Let us first review the minimum ingredients we need to write the off-shell form of N = 2

supergravity action in four dimensions (see for example [33 – 35]). In what follows we

use the notation of [36]. To study this theory it is useful to start with superconformal

theory and then we can fix the gauge to get the supergravity theory we are interested in.

The representation of the corresponding superconformal algebra contains Weyl, vector and

non-linear multiplets.

Since we are interested in the off-shell representation, these multiplets contain dynami-

cal bosonic fields, the corresponding fermionic superpartners and non-dynamical fields. The

dynamical bosonic fields of the theory are (N + 1) complex scalars XI with 0 ≤ I ≤ N ,

metric Gµν and (N + 1) gauge fields AI
µ. The non-dynamical fields of the multiplets are a

complex anti-self-dual antisymmetric tensor field T−
µν , a real scalar field D, a U(1) gauge

field Aµ, an SU(2) gauge field V i
jµ, a vector field Vµ, a set of SU(2) triplet scalar fields

Y I
ij , an SU(2) triplet scalar field Mij and scalar field Φα

i which transform as a fundamental

of both the gauge SU(2) and global SU(2) symmetries. Here i, j = 1, 2 are SU(2) indices

which are raised and lowered by the anti-symmetric tensor εij and εij . There are also

fermionic fields which are not presented here.

In this formulation the action involving these fields can be written in terms of the

prepotential F (XI , Â), which is a homogeneous function of the complex scalars XI and

the composite auxiliary field Â = T−µνT−
µν such that

F (λXI , λ2Â) = λ2F (XI , Â). (3.1)

In terms of the prepotential, defining

FI =
∂F

∂XI
, FÂ =

∂F

∂Â
, FIJ =

∂2F

∂XI∂XJ
, FIÂ =

∂2F

∂XI∂Â
, FÂÂ =

∂2F

∂Â∂Â
, (3.2)

the bosonic part of the Lagrangian is given by ( see equation (3.111) of [36])

8πL = − i

2
(XI F̄I − X̄IFI)R +

[

i(∂µFI + iAµFI)(∂
µX̄I − iAµX̄I) +

i

32
F̄ Â

+
i

4
FIJAI

µνAJµν +
i

8
F̄IA

I
µνT−µν +

i

2
F̂−

µνFIÂAIµν − i

8
FIJY I

ijY
Jij +

i

2
FÂĈ

− i

8
FÂÂ(B̂ijB̂

ij − 2F̂−
µν F̂−µν) − i

4
B̂ijFIÂY Iij + h.c.

]

(3.3)

− i(XI F̄I − X̄IFI)

(

∇µVµ − 1

2
V µVµ − 1

4
|Mij |2 + |∂µΦα

i +
1

2
Vk

iµΦα
k |2

)

,

where AI
µν = F I−

µν − 1
4X̄IT−

µν with F I−
µν = 1

2(F I
µν − i ∗F I

µν). As we will see this particular

combination plays an important role. Note that the fields are subject to the constraint

∇µVµ − 1

2
V µVµ − 1

4
|Mij |2 + |∂µΦα

i +
1

2
Vk

iµΦα
k |2 = D − 1

3
R. (3.4)

For more details and also the definition of other components which we have used here

see [36].
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Let us now consider an extremal black hole in this supergravity theory with near

horizon geometry of the form [25]

ds2 = v1(−r2dt2 +
dr2

r2
) + v2(dθ2 + sin2 θdφ2),

F I
rt = eI , F I

θφ = pI sin θ, XI = xI , T−
rt = v1ω. (3.5)

The other fields are given by

Aµ = 0, V i
jµ = 0, Vµ = 0, Mij = 0, Y I

ij = 0, Φα
i = δα

i , D − 1

3
R = 0. (3.6)

It is easy to see that this is a consistent truncation. Note that for the ansatz we are

considering we have

Â = −4ω2, AI
µν ≡ v1A

I = eI − i
v1

v2
pI − 1

2
x̄Iv1ω. (3.7)

Following [16] the entropy function is defined as

E(v1, v2, ω, xI , eI , qI , p
I) = 2π

(

−1

2
qIe

I −
∫

dθdφ
√
−GL

)

(3.8)

which for our ansatz it reads

E = −πqIe
I − πv1v2

{

i(v−1
1 − v−1

2 )(xI F̄I − x̄IFI) +
i

8
(ω̄2F − ω2F̄ )

− i

4
FIJAIAJ +

i

4
F̄IJ ĀIĀJ − i

4
ωF̄IA

I +
i

4
ω̄FI Ā

I (3.9)

+ 8iωω̄(−v−1
1 − v−1

2 +
1

8
ωω̄)(FÂ − F̄Â) + 64i(v−1

1 − v−1
2 )2(FÂ − F̄Â)

}

.

In this framework the equations of motion can be obtained by extremizing the entropy

function i.e.
∂E
∂vi

= 0,
∂E
∂xI

= 0,
∂E
∂ω

= 0,
∂E
∂eI

= 0. (3.10)

The entropy function defined here is invariant under local scale transformation

xI → λxI , vi → λ−1λ̄−1vi, eI → eI , ω → λω, qI → qI , pI → pI . (3.11)

This is related to the conformal symmetry of the N = 2 supergravity theory action. In

special geometry one can fix this symmetry using the symplectic constraint on (LI ,MI)

that is i(L̄IMI − LIM̄I) = 1. In principle one should fix the gauge, though, it is more

convenient to work with gauge invariant action. Later on we will fix the gauge in the level

of equations of motion. We note, however, that the gauge can be fixed in several ways. In

particular, following [25], the scaling symmetry in entropy function can be eliminated by

imposing the condition

ω = constant, (3.12)

on the equations of motion.

– 6 –
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It is also worth noting that if we eliminate eI , using the equations of motion for eI ,
∂E
∂eI = 0, one can see that entropy function is invariant under symplectic transformation

which acts on (pI , qI) and (XI , FI) as follows:
(

X̌I

F̌J

)

=

(

U I
K ZIL

WJK V L
J

)(

XK

FL

)

,

(

p̌I

q̌J

)

=

(

U I
K ZIL

WJK V L
J

)(

pK

qL

)

, (3.13)

where U , Z, W and V are each (N + 1) × (N + 1) matrices satisfying

UT W − W TU = 0, ZT V − V T Z = 0, UT V − W T Z = 1. (3.14)

This symplectic invariance keeps other parameters unchanged. It should be mentioned

that in entropy function formalism, the set (XI , FI) plays the role of (LI ,MI) in special

geometry.

Now we have all the ingredients we need to write the most general form of the attractor

equations using the entropy function formalism. In fact the main purpose is to obtain the

value of the scalars or moduli fields at the horizon in terms of the electric and magnetic

charges of the black hole. Therefore as the first step one needs to extremize the entropy

function with respect to eI . Doing so, one gets

qI = i
v2

4

[

(ωF̄I − ω̄FI) + 2(FIJAJ − F̄IJ ĀJ)

]

. (3.15)

On the other hand taking the real and imaginary parts of AI one finds

eI =
v1

4

[

(ω̄xI + ωx̄I) + 2(AI + ĀI)

]

, (3.16)

and

pI = i
v2

4

[

(ωx̄I − ω̄xI) + 2(AI − ĀI)

]

. (3.17)

The equations (3.15) and (3.17) are actually the generalized attractor equations for N = 2

supergravity in four dimensions where the higher order corrections have also been taken

into account. In fact these equations should be compared to those in (2.11) which are the

generalized attractor equations in leading order.

These equations can be applied to both BPS and non-BPS black hole solutions. Actu-

ally the supersymmetric and non-supersymmetric black holes correspond to the solutions

with AI = 0 and AI 6= 0, respectively. This is very similar to what we have in the spe-

cial geometry framework of these theories where supersymmetric and non-supersymmetric

solutions or attractor equations correspond to DZ = D̄Z̄ = 0 and DZ 6= 0, D̄Z̄ 6= 0,

respectively.

To understand the relation between supersymmetry and vanishing AI better, it is useful

to look at the supersymmetry transformation of the spinor fields in the vector multiplet. In

particular consider the variation of gaugini under supersymmetry transformation generated

by Q with the parameters εi in the notation of [36]

δΩI
i = 2γµDµXI εi +

1

2
εijγ

µγνFI−
µν εj + Y I

ijε
j + 2XIηi, (3.18)

– 7 –
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where D is the covariant derivative with respect to all superconformal transformations and

FI−
µν = F I−

µν − 1

4
X̄IT−

µν + fermionic term. (3.19)

The last term in the gaugini transformation is because of the special superconformal trans-

formation given by the parameters ηi.

In the ansatz we are considering here, the covariant derivative is just a simple derivative

and since in our ansatz XI are constant therefore the first terms is zero. The last term

is also zero because we have already fixed the conformal gauge. On the other hand since

there is no non-zero fermion in the definition of FI−
µν , we arrive at

δΩI
i =

1

2
εijγ

µγνFI−
µν εj ∝ AIεijε

j . (3.20)

So for AI = 0 we would expect to get a supersymmetric solution, while for AI 6= 0 it would

be non-supersymmetric.

As a conclusion we note that the attractor equations are given in terms of the scalar

fields and the functions AI . In order to find the value of the scalar fields in terms of the

black hole charges one first needs to find AI in terms of the moduli fields. This can be

done by extremizing the entropy function with respect to other parameters v1, v2, x
I and

ω. Doing so, one finds

∂E
∂xK

= 0 = 4(
1

v1
− 1

v2
)(F̄K − x̄IFIK) − FKIJAIAJ − ω̄F̄KIĀ

I

+ ω̄FKIĀ
I + 32ωω̄(−v−1

1 − v−1
2 +

1

8
ωω̄)FÂK + 256(v−1

1 − v−1
2 )2FÂK ,

∂E
∂v1

= 0 = −8v−1
2 F̄Ix

I + 2FIJAIAJ + 4iv−1
2 FIJpIAJ + 2ωFIJ x̄IAJ

+ 2iv−1
2 ωF̄Ip

I + ω2F̄I x̄
I + ω̄2F + 64ωω̄(−v−1

2 +
1

8
ωω̄)FÂ

− 512(v−2
1 − v−2

2 )FÂ − c.c.,

∂E
∂v2

= 0 = 8v−1
1 F̄Ix

I − 4iv−1
2 FIJpIAJ − 2iv−1

2 ωF̄Ip
I − 2FIJAIAJ

− 2ωF̄IA
I + ω̄2F + 64ωω̄(−v−1

1 +
1

8
ωω̄)FÂ + 512(v−2

1 − v−2
2 )FÂ − c.c.,

∂E
∂ω

= 0 = 2ωFIJÂAIAJ +
1

4
FIJ x̄IAJ − 2ω̄ωFIÂĀI − 1

4
F̄IA

I

+ 8ω(v−1
1 − v−1

2 )x̄IFIÂ + 8ω̄(−v−1
1 − v−1

2 +
1

8
ωω̄)(FÂ − F̄Â)

− 64ωFÂÂ

(

ωω̄(−v−1
1 − v−1

2 +
1

8
ωω̄) − 8(v−1

1 − v−1
2 )2

)

. (3.21)

These equations are enough to find AI , v1 and v2 in terms of xI . Then by plugging them

into the attractor equations one can find the moduli xI in terms of the electric and magnetic

– 8 –
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charges of the black hole as expected from attractor behavior. Finally due to the entropy

function formalism the entropy associated with the black hole is given by the value of the

entropy function at the extremum

SBH = E|extremum. (3.22)

3.2 Explicit example

To see how these attractor equations work, let us consider a specific theory with three

vector multiplets and a prepotential

F (X0,X1,X2,X3, Â) = −X1X2X3

X0
− CÂ

X1

X0
. (3.23)

This is the theory known as STU model with the identification

X1

X0
= iS,

X2

X0
= iT,

X3

X0
= iU. (3.24)

which describes a subsector of the low energy effective action for tree level Heterotic string

theory on T 4 × T 2 or K3 × T 2. For such a prepotential, the equations of motion derived

from the Lagrangian density are invariant under SO(2, 2) = SL(2, R) × SL(2, R) T-duality

symmetry. If we define the electric and magnetic charges related to the gauge fields as

q0 = Q4, q1 = P4, q2 = Q1, q3 = Q3,

p0 = P2, p1 = −Q2, p2 = P3, p3 = P1, (3.25)

we can easily see that under SO(2, 2) duality transformations, ~Q and ~P behave in a way

that Q2, P 2 and Q.P given by

Q2 = 2(Q1Q3 + Q2Q4), P 2 = 2(P1P3 + P2P4),

Q.P = (Q1P3 + Q3P1 + Q2P4 + Q4P2), (3.26)

remain invariant. Due to this symmetry one has the freedom to work in a frame in which

p0 = 0. Therefore using the attractor equation for p0 in (3.17), we choose X0 to be real

and as a result A0 will also be real.

We can now proceed to solve the equations of motion for this case. For the moment we

assume C = 0, or in other words we consider the leading order term. Setting xI = yI + izI

with z0 = 0, one can see that the most general solutions of the equations of motion are

given by

v1 = v2 =
16

ωω̄
, (3.27)

and

AI = 0, (3.28)

or

AI = −1

4
(3yI + izI), (3.29)

– 9 –
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which correspond to supersymmetric and non-supersymmetric solutions, respectively. Note

that we have fixed our gauge by choosing ω = 1
2 .

Let us consider the supersymmetric solution given by (3.28). Plugging this solution

into the attractor equations given by (3.15) and (3.17) we can find the value of the moduli

at the attractor points as follows

x0 = − 1

16
Q2

√

P 4

P 2Q2 − (P.Q)2
,

x1

x0
= −P.Q

P 2
+ i

√

P 2Q2 − (P.Q)2

P 4
,

x2

x0
= − 1

2Q2P1
(Q2P4 + Q1P3 − P1Q3) − i

P3

Q2

√

P 2Q2 − (P.Q)2

P 4
,

x3

x0
= − 1

2Q2P3
(Q2P4 − Q1P3 + P1Q3) − i

P1

Q2

√

P 2Q2 − (P.Q)2

P 4
. (3.30)

This solution is physical for P 2 > 0 and (Q.P )2 < Q2P 2. Using the entropy function

evaluated at the extremum, the entropy of these supersymmetric black holes is

SBH =
π

2

√

P 2Q2 − (P.Q)2. (3.31)

Similarly one can proceed to the other solution which is non-BPS, (3.29), to find the values

of the moduli at the horizon

x0 = − 1

32
Q2

√

P 4

−P 2Q2 + (P.Q)2
,

x1

x0
= −P.Q

P 2
+ i

√

−P 2Q2 + (P.Q)2

P 4
,

x2

x0
= − 1

2Q2P1
(Q2P4 + Q1P3 − P1Q3) − i

P3

Q2

√

−P 2Q2 + (P.Q)2

P 4
,

x3

x0
= − 1

2Q2P3
(Q2P4 − Q1P3 + P1Q3) − i

P1

Q2

√

−P 2Q2 + (P.Q)2

P 4
, (3.32)

which is the same as supersymmetric case, but with a minus sign in P 2Q2 − (P.Q)2. This

corresponds to the case where P 2 > 0 and (Q.P )2 > Q2P 2. This is the non-supersymmetric

black hole solution with the entropy

SBH =
π

2

√

−P 2Q2 + (P.Q)2 . (3.33)

In the more simplified BPS case with only 4 charges non-zero which are given by

P1 = P3 = P0, Q2 = Q4 = −Q0, Q1 = Q3 = P2 = P4 = 0, (3.34)

it can be seen that the non-BPS solution can be obtained (up to a normalization in our

notation) by canonical transformation on BPS solution [37] which is

P1 = P3 = P0, −Q2 = Q4 = −Q0, Q1 = Q3 = P2 = P4 = 0. (3.35)

This canonical transformation in leading order preserves the effective potential and entropy

of the black hole. We note, however, that it is not obvious if higher order corrections would

respect this canonical transformation.
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The next step is to consider higher order corrections which correspond to the case

where C 6= 0. To do this one needs to solve the equations with C 6= 0. Since these

equations are algebraic equations in principle one can solve them. In particular for the

supersymmetric case doing so, in the gauge of ω = 1
2 , one finds [25]

x0 = − 1

16
Q2

√

P 2(P 2 + 512C)

P 2Q2 − (P.Q)2
,

x1

x0
= −P.Q

P 2
+ i

√

P 2Q2 − (P.Q)2

P 2(P 2 + 512C)
,

x2

x0
= − 1

2Q2P1
(Q2P4 + Q1P3 − P1Q3) − i

P3

Q2

√

P 2Q2 − (P.Q)2

P 2(P 2 + 512C)
,

x3

x0
= − 1

2Q2P3
(Q2P4 − Q1P3 + P1Q3) − i

P1

Q2

√

P 2Q2 − (P.Q)2

P 2(P 2 + 512C)
, (3.36)

with v1 = v2 = 64 and AI = 0. The entropy is given by

SBH =
π

2

√

P 2Q2 − (P.Q)2

√

1 +
512C

P 2
. (3.37)

To compare this with the results given in terms of the special geometry [26, 18] it is

instructive to rewrite the corrected entropy in terms of the prepotential. From the entropy

function one gets

SBH = 2π(−1

2
qIe

I − 16i(ω−2F − ω̄−2F̄ )). (3.38)

By making use of the attractor equations qI = 4i(ω̄−1F̄I − ω−1FI) and eI = 4(ω̄−1x̄I +

ω−1xI) the entropy reads

SBH = π
(

8(pIFI − qIx
I) − 256 Im (FÂ)

)

, (3.39)

which is the same as that obtained in [26, 18].

4. Black hole partition function

In the previous section we have studied the generalized attractor equations in presence of

higher order corrections using entropy function formalism. The aim of this section is to

use this formalism to understand the physical interpretation of these equations better. To

do this we compare the entropy function formalism to [1]. In the following we shall review

the relevant part of the paper.

The attractor equations for BPS black hole in N = 2 four dimensional supergravity

could be used to express the entropy of the extremal black holes as the Legendre transfor-

mation of a function, F , which is given by the imaginary part of the prepotential evaluated

at the attractor point

SBH(~p, ~q) = F(~e, ~p) − eI ∂F(~e, ~p)

∂eI
≡ F(~e, ~p) − eIqI , (4.1)
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where (~q, ~p) are electric and magnetic charges of the black hole and e is the electric potential

defined by eI = −∂SBH

∂qI
. It is natural to define a mixed partition function for black hole as

follows

ZBH(~e, ~p) =
∑

~q

d(~p, ~q)e~e.~q. (4.2)

Here d(~p, ~q) is integer black hole degeneracy and ln d(~p, ~q) is the microcanonical entropy.

Therefore one leads to the following expression for the black hole partition function in

terms of the function F 2

ZBH(~p,~e) = eF(~p,~e). (4.3)

Since in the entropy function formalism one gets the attractor equations from the

equations of motion, it is natural to ask if we can follow the above procedure to define a

(mixed) partition function using the entropy function formalism.

Form entropy function formalism we learned that the entropy of the extremal black

hole is given by

SBH(pI , qI) = 2π

(

eI ∂f

∂eI
− f

)

= 2π(eIqI − f). (4.4)

Comparing the Wald formula in the form of (4.4) and the fact that the equations of

motion would lead to the attractor equations, it is tempting to follow OSV proposal to

define a partition function for the corresponding extremal black hole as ZBH = e−f .

Let us apply the above procedure to a toy model given by the following action

S =
1

16π

∫

d4x
√
−G (R − F 2). (4.5)

Consider an extremal black hole solution with near horizon geometry given by

ds2 = v1(−r2dt2 +
dr2

r2
) + v2(dθ2 + sin2 θdφ2) , Frt = e . (4.6)

So that f(v1, v2, e) = 1
2v1v2(

v1−v2

v1v2
+ e2

v2

1

). Extremizing f with respect to v1, v2 we get v1 =

v2 = e2. On the other hand we have q = ∂f
∂e = e and therefore from (4.4) we find SBH = πq2.

Alternatively, using the fact that f = e2/2 one can define a partition function as

Z(e) = e−e2/2 and therefore we find the microscopic degrees of freedom as follows

d(q) =

∫

de e2π(qe− 1

2
e2) = eπq2 ⇒ Smicro = ln d(q) = πq2 , (4.7)

in agreement with the black hole entropy. Therefore we can conclude that the entropy

of the black hole is exactly given by the microcanonical entropy. It is also possible to

consider higher order corrections to the action. In the present case the corrections can

be given by the Gauss-Bonnet action which leads to a correction as d(q) = eπq2+2πλ or

Smicro = πq2 + 2πλ, in agreement with the Wald formula for the black hole entropy in

2Since it is a mixed partition function, a priori it is not clear whether one can interpret F as the black

hole free energy. We would like to thank C. Vafa for a discussion on this point.
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the presence of the Gauss-Bonnet term [19]. Here λ is the coefficient of the Gauss-Bonnet

term.

To be more realistic we consider the system we have studied in the previous section.

By making use of the results in the previous section one finds

f(v1, v2, e
I , pI , xI , ω) =

1

2
v1v2

{

i(v1
−1 − v2

−1)xI F̄I −
i

4
FIJAIAJ − i

4
ωF̄IA

I

+

(

8iωω̄(−v−1
1 − v−1

2 +
1

8
ωω̄) + 64i(v−1

1 − v−1
2 )2

)

FÂ

+
i

8
ω̄2F + c.c.

}

. (4.8)

In the supersymmetric case from equations (3.21) we find AI = 0 and v1 = v2 = 16
ωω̄ . So

one arrives at

f(eI , pI) = −2Im

(

(

4

ω

)2

F (xI , ω)

)

, (4.9)

where xI = ω
8 (eI + ipI). It is worth noting that in comparison with [1] f can be identified

with −F and therefore following [1] the system can be described as a mixed ensemble.

Since, in general, the equations (3.21) have two solutions, supersymmetric and non-

supersymmetric, one might naturally expect that the situation would also go through the

non-supersymmetric case. In fact from the equations of motion one may first obtain AI

and therefore using the relation ĀI + ω̄
2 xI = v−1

1 (eI + iv1v
−1
2 pI) we can find the moduli in

terms of eI and pI . Plugging the results into (4.8) one finds f as a function of eI and pI and

thereby the partition function can be evaluated along the supersymmetric case. Partition

function for non-BPS solution has also been studied in [38, 39].

Regarding the fact that the entropy function formalism could simply reproduce the

known results for BPS case and also is powerful enough to be generalized to non-BPS

solution, one then might naively think that we can generalize it for theories without su-

persymmetry as well. We note, however, that it is not obvious whether this is going to be

the case. In fact a priori it is not clear if the black hole could be described by a mixed

ensemble even though the entropy is given by a Legendre transformation of the function

f . We will come back to this point in the next section.

5. Discussions

In this paper we have shown how the entropy function can reproduce the generalized

attractor equations and also how to generalize them while higher order corrections are also

taken into account. In fact in the supersymmetric model we have studied in this paper we

showed that one of the attractor equations comes out as the equation of motion and the

other comes as the supersymmetry condition.

Having had the attractor equations in general form we have also tried to see if this

can help us to define a partition function for the extremal black hole following [1]. In

particular we have considered a particular example which is an extremal black hole in four
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dimensional supergravity obtained by compactification of type IIA on Calabi-Yau 3-fold.

In this example we could identify the function f with −F and thereby to define a mixed

partition function as e−f .

We note, however, that these black holes can also be studied from Heterotic string

point of view. It is then natural to ask if this description also leads to the same conclusion.

Therefore it is worth to reconsider the model from the Heterotic string point of view. To

do this we shall restrict ourselves to two charged black hole, though the generalization for

higher charges is straightforward.

For two charged black hole it is known that in leading order the entropy is zero while

higher order corrections (Gauss-Bonnet in the present case) stretches the horizon leading

to non-zero entropy. Taking into account the Gauss-Bonnet term and doing the same

computations as that in the previous section (see also [20]) we find f = 0. Therefore it

seems impossible to use the OSV procedure to define a (mixed) partition function. In fact

there is a proposal for the statistical ensemble one may associate to this black hole due to

Sen [41] who conjectured that, after taking into account the holomorphic anomaly, a grand

canonical ensemble underlies the system. On the other hand from our considerations in the

previous section which has been done in the type IIA dual description we have been able

to get a mixed partition function using entropy function mechanism (see also [28] where

the author has considered the system as a mixed ensemble and confirmed OSV conjecture

without taking into account the holomorphic anomaly term.).

Therefore we face a puzzle, namely, studying the system from two different point of

views, leads to two different ensembles. So far we do not have a good interpretation of

this observation. As far as the technical point is concerned we note that changing type

IIA description to Heterotic description we have lost one of the attractor equations. As we

have mentioned one of the equations comes from the equations of motion while the other

one is the condition we get from supersymmetric condition which as we have seen, depends

on the way we incorporate the supersymmetry in the theory.

We also note that it might be related to the fact that OSV proposal is not symplectic

invariant. In particular it begins with a symplectic invariant answer ( Wald formula)

and performs a Legendre transform and an inverse Laplace transform both of which are

non-symplectic invariant operation. It is not guaranteed that the final answer will be

symplectic invariant. In fact the entropy function seems to be a more natural object than

the Lagrangian density f , (the latter is not symplectic invariant while the former is).3

As a final remark we note that the basic point in entropy function formalism is the

fact that near horizon field configuration of these extremal black holes is fixed just by

using the symmetries of near horizon geometry that is AdS2 × S2. This is, in fact, the

notion of attractor mechanism which means that the value of the scalar fields at the horizon

are independent of their values at infinity and they are fixed by the black hole charges.

Moreover the entropy of the black hole is just given by the black hole charges too. Therefore

one may conclude that the entropy function formalism leads us to the fact that the near

horizon field configuration has enough information about the corresponding extremal black

3We would like to thank A. Sen for a discussion on this point.

– 14 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
7

hole. In this sense, in comparison with AdS/CFT [42 – 44], one might suspect that the

attractor behavior plays the role of the decoupling limit in this context.

It is worth noting that the black hole attractor mechanism can also be treated as the

holographically dual to a conformally invariant quantum mechanics [47]. This might also

indicate that the near horizon modes have enough information about the whole system. It

would be very interesting to understand this connection better. To do this, it might be

useful to consider the supersymmetric case where one may use the results of [45, 46]. In this

supersymmetric case where we consider type IIA string theory compactified on Calabi-Yau

3-fold the four dimensional theory may have an extremal black hole solution which can

be studied using the AdS2 × S2 background. In this case the flux data on the AdS2 × S2

geometry is mapped to the charges of the dual black hole and its entropy is the logarithm

of the norm of the Hartle-Hawking wave function on AdS2 × S2 [45, 46].
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